dx boast hosting facilities in each of the key gaming markets, interconnected by a dedicated high capacity global network all supported through our technical and customer service teams working in partnership with client solutions.
  dx's unique combination of skills and experience ensures that all our solutions are cognisant of the interoperability of the application and the underlying systems required to meet the specific needs of the Online Gaming Industry.

Our services are used by a wide variety of companies in the gaming industry. Deployments range from latency sensitive First Person Shooter clusters, complex MMORPG server farms, robust web and dB driven applications through to business continuity cover.

The dx team have been at the heart of online gaming and managed services for over two decades. Our clients have included some of the biggest names in the entertainment industry as well as some of the most respected Global companies and brands.

We source products and services from the premier companies in each field of focus, from hardware suppliers like DELL and CISCO to Tier 4 Data Centres like Telehouse. This combination of top draw providers, our global presence and unique knowledge gives dx that bit extra to support tailored solutions for each and every one of our partners.

Contact us now to discuss your needs in confidence, we will help you realise the full potential of your online world.

Case Study One


Over a period of time the client had evolved a multi-location and multi-server solution to delivering a complex system of websites centred on a number of databases. The client has two trade shows a year and during these the traffic to the systems could increase by up x10 normal traffic.

The dx Solution was accepted by the client 4 weeks before one of the trade shows meaning that the service needed be operational, migrated and fully test well before the start of the show.

Customer Requirements
The previous platform employed servers located in New York and London, the websites and databases had evolved over a long period of time. The previous provider had given notice to the client of withdrawal of service and there was no moving the date which was one week before the next trade show. The client was looking for a single solution to consolidate the existing environments and to provide a platform to grow in the future. The inherent capacity of the solution should be able to handle x10 increase in traffic without the need for system change. As with all requirements the solution needed to offer the client operational and cost improvements.

dx Solution
dx proposed and implemented a single site solution based upon its Atlanta (US) Data Centre.
The solution involved a high availability database hosting large volumes of images and articles with multiples front end webservers traffic shared by a Load Balancer offering security and resilience.

Case Study One Diagram

The Systems were delivered to the client 3 weeks after receipt of signed order and well in time for data migration, testing and service go live before the up and coming trade show. dx’s involvement did not stop with the systems handover. As with all migrations from historic disparate systems there are always issues that need to be resolved, dx fully supported the client throughout this activity ensuring that all systems were operational.

Case Study Two
It was clear that the client was going through a significant growth phase and this was affecting performance of their systems. There are many ways to manage growth and it is not always possible to immediately implement the utopian solution, the dx solution identified a cost effect way of getting to an end solution that met the present and future needs of the client.

As with everything in the Internet, there is no right way of getting to an end point. This solution was a starting point which gave a roadmap whilst incorporating flexibility to rollout or amend the solution as the clients requirements developed.

Customer Requirement
The initial requirement had been defined in a series of e-mails:
The bulk of the CPU power is used for the dB.  For alot of users the software isn't even hosted on the server. Flash portals prefer to host the software on their servers so the customer primarily handles the database traffic. There is essentially no processing of data on the server it is just shuttled back and forth between the game and the server via http calls. The client currently does not host the streamed music because of bandwidth considerations. The music is a low priority though. What the customer really needs is to keep the database up and serving requests quickly.

The client needed a scalable solution that delivers fast http access to the database that could support up-to 3,000,000 hits a day. The client was unclear as to what 3,000,000 hits meant in terms of simultaneous users.  They were unable to find that statistic on their current platform. The only statistic to work on was the previous Saturday sustained 3 million hits most of that representing database traffic. The priority was exclusively about the database being quick

Traffic Analysis
Original configuration ran on a Dual Core Xeon with guarantee of 2 Cores, employing a shared network store of 160 Gbytes, using 4 GBytes RAM. The  Database  was MySQL, some of the biggest performance affecters on MySQL are available memory and disk speed access. Immediate performance improvement should be from increasing memory to 8 GBytes. As the disk store was over a network this could be degrading performance. On a Sunday there were 3,000,000 hits (we assume this is DB requests) and 200,000 games played.

Further investigation was required into the traffic profile of the client systems, detailed below are our assumptions and calculations used to work out key load parameters. Key parameters are peak number of concurrent sessions and the peak number of requests to the database.

The assumptions made need to be verified.
If we assume that peak traffic in the day is twice the average and the average duration of a session is 15 minutes the following stats could be gleamed:
Average user session employs 15 DB queries
Peak number of DB requests is 1 per second
Peak number of concurrent sessions is 69
These results were derived from the following formulae.
Calculate the number of requests at peak by using the formula:
(Total number of visitors per day * avg. no requests per visitor * peak) / seconds in a day
In this formula, peak is the ratio of peak traffic to average traffic. You will need to either measure how much greater peak is than average or make an assumption using expected user behaviour.
Calculate the maximum concurrent users by using the formula:
(Total number of visitors per day * duration of the visit * peak) / minutes per day
In this formula, duration of the visit is represented in minutes.

dx Solution
The traffic calculations do not seem to indicate an initial requirement beyond a beefy Database Server, say 2 x Quad Core Xeons, 8 GByte RAM and 2 x 1 Terabyte SCSI drives configured as RAID 1.

Should the usage continue to grow significantly an ultimate solution would be database clustering across several servers. There are several steps from a single server to a clustered solution, these will be determined by rate of growth, the application environment and of course funding. The clustering solution requires a minimum of 4 servers and should be viewed as an architecture that can give performance, reliability and scalability with incremental capacity growth beyond the minimum configuration.

MySQL Clustering is a standard solution which employs “commodity” servers thus reducing the total cost of ownership. A MySQL server can employ a cluster through enabling ndb-cluster, the cluster facility therefore is independent of the database application and should not require changes to the existing operation. The basic key components of a MySQL cluster are shown in the diagram below:

Case Study Two

The database is replicated across multiple Data Nodes which in turn are controlled by a Management server. If one Data Node fails the other continues to server requests. The number of data nodes must be a minimum of two but can increase with demand. In the same way the number of SQL Nodes can independently increase.

A major benefit of this approach is that the increased capacity in SQL Nodes or Data Nodes can be in a definable independent incremental manner, since “commodity” servers can be employed the start up and incremental costs are more manageable.

dx Proposal
The dx proposal was to initially implement a single server solution to deliver services in the same manner that the client was delivering service at the time. If traffic continued to grow at its current rate the client had the option to upgrade to a clustered solution.

The benefits of this approach include:
1. Initial implementation a matter of migration rather than new development
2. Upgrade option within the timeframes of the client
3. No cost penalty for upgrading
4. Future proofed configuration to match the client growth

dx proposed that it implement a dedicated database server within its Atlanta data centre with significantly increased capacity on the current configuration.  Should the client wish to upgrade to a cluster based solution the initial Cluster solution that dx proposed is shown below:

The proposal was to frontend the service with SQL Nodes sitting behind a traffic load balancer, this enhanced performance as well as giving a graceful failover should one of the Frontend servers fail. Throughout we proposed to employ Quad Core Processors and 8 Gbytes of RAM, using more RAM assists in the caching nature of MySQL and again improving performance.

The Frontend servers were configured with single disks as resilience is in the Load Balancer and of course the cluster. We maintained the use of dual discs in RAID1 configuration for the cluster, although this may be considered overkill particularly if 3 or more Data Nodes are employed.

The client saw performance issues on their current systems resulting from successful rollout of their game.
Based on scant information and assumptions a traffic profile was quantified forming a basis for designing the solution and a methodology for defining future Service Indicators. Should the traffic continue to exponentially grow a resilient high performance and cost effective solution was required.

dx proposed that the ultimate solution could be based upon a clustered MySQL database, it proposed a migration path that can be determined by the client, based upon growth and economic criteria.


About DX
||| DX Solutions ||||| DX Clients |||||Case Studies |||||Press Releases |||||Site Map||||| Terms and Conditions ||||| Contact DX

Content copyright Dexterity Networks Limited. All rights reserved.